Monthly Archives: November 2014

This astounding neuroscience rediscovery could be a central piece of the puzzle

Some bold and persistent researchers have rediscovered an unusual bundle of nerve fibres or a “major white-matter fascicle” in the human brain. Nice work! It is now called the vertical occipital fasciculus (VOF). This discovery could be an important new piece in the puzzle in researching and exploring ideas that I’m looking at in this blog, such as the relationship between the many different varieties of synaesthesia and face recognition or face memory and also reading ability. I think this discovery could be highly relevant because the rediscovered structure is a pathway of white matter that connects the occipital lobe at the rear of the brain, where visual processing happens, to other areas of the brain, and there is speculation that information carried by this pathway could play a role in face recognition and reading. I have proposed that synaesthesia might be linked to superiority in face recognition (super-recognition) and superiority in reading, citing myself and close kin as examples. I have also described and written about types of synaesthesia that involve faces or other complex memories of images as the concurrent or the inducer or both. Researchers have found that grapheme-colour synaesthesia is characterized by greater coherence in the white matter network in the brain, and that would presumably include the rediscovered VOF. I have identified the rear of the brain, the right hemisphere of the brain and the fusiform gyrus as the parts of my brain that are most likely be the locations of the events that give rise to my super-recognition and synaesthesia and related interesting goings-on, so this white matter highway at the back of the brain  is very likely involved in these processes.

I’m amazed by the story of how this brain pathway came to be forgotten or discredited by science. Apparently because it was unusual in it’s orientation its very existence conflicted with established thinking at the time, so it became non-existent in the eyes of science. I’m sure that many scientists and neuroscience enthusiasts will be surprised that dogmatic thinking in science can create an important “blind spot” in scientific knowledge, but I’m not one of those people. I’ve seen too much misbehaviour, bias and simple ignorance in neuroscience to believe that the fairy-tale accounts of science as an automatically self-correcting enterprise apply to this corner of the world of science.

Blair, Jenny Lost and Found: How a pair of scientists rediscovered a part of the human brain. Discover. October 1, 2015.


Is there a relationship between prosopagnosia and Capgras syndrome?

Finding confirmation of my beliefs and ideas, as you do

A closely related family member of mine recently scored a perfect mark on an adult literacy test geared to normal adults (which was true to form) , and another closely related family member in mid-childhood recently explained that they perceive motor vehicles as having faces and they categorize cars, utes and 4WDs into genders, square old 4WDs being male. I can see how that makes sense, but all the same I’ve never been that much of a car personifier. Ever since I was a child I’ve personified numbers and alphabet letters in great detail, along with perceiving them as essentially associated with very specific colours, and the shapes and motions of cars often make me think of hunting animals in some deeply instinctive way, but unlike my young relative and the many Australians who decorate their own motor vehicles with oversized curly eyelashes or giant imitation testes, I don’t see motor vehicles as male or female.

On the surface most people seem pretty-much normal and average, but if you make the most superficial investigation by testing or speaking with people about their thoughts and perceptions, you might find that there is an interesting and sometimes significant range of differences in the way our minds work. Grapheme-colour synaesthesia, personifying synaesthesia and elite and precocious levels of ability in reading, spelling and general literacy are just some of the interesting things that run in my family and are also experienced by me, and I am also a super-recognizer. A super-recognizer is a person who has an elite level of ability in recognizing faces or face memory, and typically can achieve perfect or near-perfect scores on tests of face memory. I believe that this co-occurrence of synaesthesia and elite abilities in face memory and literacy are no coincidence. I believe all of these things are based on hyper-connectivity or hyper-development in the rear parts of the brain including the fusiform gyrus, and also in the right hemisphere of the brain. I believe the genetic basis of this development might be linked to genes that code for particular variations in the functioning of the immune system, possibly involving the complement chemicals, microglia and synaptic pruning. I’m fascinated by the possibility that research work that has been done in the last decade linking immunology and neuropsychology can inform us about the origins of synaesthesia and also specific gifts and deficits in memory and cognition, and maybe also inform us about some types of dementia. In 2012 at this blog I explicitly identified research on the immune system, complement, microglia and synaptic pruning done by Dr Beth Stevens as a possible explanation for the origins of developmental synaesthesia, an idea that was so good that some synaesthesia researchers made it the basis of a speculative paper that was published in a peer-reviewed journal last year (they forgot to acknowledge me as the first to publish this idea). Work done on MHC1 (part of the immune system) and the brain by Carla Shatz is another area of scientific research that I find tremendously exciting, and I believe that the general area of research on the relationships between brain structure and the immune system is of such originality and importance that it should attract one or more Nobel Prizes.