Tag Archives: Spelling

Does fascinating advice from a super-polyglot utilize a psychological effect unknown to science?

Tell me about your key technique for learning a new language, and how it works

I call it shadowing. I shadow the audio of the target language by listening to it through earphones and speaking along with it as fast as I possibly can. I’ve found the best way to do this is while walking outdoors as swiftly as possible, maintaining a perfectly upright posture and speaking loudly. [and he goes on to further discuss]

Hooper, Rowan You had me at halla. New Scientist. Issue 3110 January 28 2017 p.42-43.


This is advice from Alexander Arguelles, who can speak around 50 languages, so it is definitely advice to take seriously. The part of the advice that interests me is the walking fast with an upright posture. This implies that bodily perceptions or perceptions of the position/location of the body in space, and movement, are important in boosting learning. This part of the advice fits in nicely with a phenomenon that I’ve described in at least one previous post in this blog, years ago, in which vection or actual physical bodily movement through space (in the form of walking outdoors while looking around) seems to evoke a cascade of thought, or somehow add fluency or speed to the normal train of thought (which could be described as the stream of consciousness or daydreaming). This effect is important to me (a super-recognizer synaesthete in a family that seems to have a gene for ease of learning languages and spelling) because I’ve found that when walking or driving a vehicle I get useful and creative and novel ideas that don’t happen when I’m not doing such activities. I also find that taking a shower (indoors!) has a similar effect, and I think the link to the outdoor activities is that parts of the brain that deal with bodily movement and visual-spatial perception are activated. I’ve observed that outdoor visual perception of movement through space or actual movement seem to promote thought or creativity, while it appears that Mr Arguelles has observed that this kind of experience promotes learning. As I’m a synaesthete who is interested in synaesthesia (specifically types involving visual memory and links between visual memory and conceptual thinking) I’ve suggested that this is actually a type of synaesthesia – experiences as one type of stimuli (visual-spatial) triggering or promoting, inside the brain, experiences of a very different type (language learning, combining discrete abstract concepts in thought). I don’t adhere to the idea that there’s a very sharp demarcation between synaesthetes and non-synaesthetes, but nevertheless, I’d be very interested to know whether Mr Arguelles is a synaesthete. Certainly there’s lots of evidence linking synaesthesia with superior memory, which a super-learner such as Mr Arguelles must surely possess.

Is the effect that I’ve identified and described embodied cognition? Is it a type of synaesthesia, enjoyed only by a minority of the population? Is it both? Neither? Has it already been described and named in the scientific literature? I don’t know. Does it need a name of it’s own? Visual-spatial stimuli-boosted cognition?

Radio show about Glenda Parkin living with dementia in suburb of Perth, Western Australia

Below are the details of a recent and very interesting radio interview on Perth public radio with Glenda and Bronte Parkin and Alzheimers WA CEO Rhonda Parker, focusing on Glenda’s experiences as a person who has a form of dementia that goes by a number of names including Benson’s syndrome, posterior cortical atrophy and PCA. This is not the first time that Glenda has shared her story with the media; she previously shared her story with Perth’s daily newspaper, the West Australian, in 2011 and she has recently been interviewed for the Community Newspaper Group.

I have unusual reasons to be grateful that Glenda has shared her story with the mass media. I happened upon her story in a copy of the West while I was enjoying coffee and one of those wonderfully greasy Sausage and Egg McMuffins in a McDonald’s restaurant in 2011, after dropping someone off to a selective school that offers students places based on high ability in the area of literacy and languages. I became intrigued by the fact that the particular type of dementia described in the article appeared to be a mirror-image of the pattern of intellectual gifts that appear to run in our family, associated with synaesthesia, a harmless, genetic, developmental and memory-enhancing condition that is caused by increased connectivity in the structure of the white matter of the brain. I wondered whether there could be an undiscovered developmental basis of Benson’s syndrome that works like the opposite of synesthesia, or could it be caused by some mature-age dysregulation of some chemical that regulates growth in the parts of the brain that seem to be hyper-developed in our family, and attacked, over-pruned or somehow damaged in Benson’s. I wrote about my ideas in this blog soon after. In 2012 my thinking on this theme took an important and exciting leap ahead when I happened across a brief article in New Scientist about research by Dr Beth Stevens on microglia, complement, synaptic pruning and elements of the immune system playing a central role in the development of the brain. I figured that one or maybe more of the complement chemicals could be the chemical that regulates growth or pruning in the parts of the brain that I had written about and attempted to identify in my 2011 blog post. I wrote a brief outline of these ideas at this blog in 2012 in an article that was archived by the Internet Archive Wayback Machine in 2012. In lat 2013 I got a big surprise when I saw my idea linking the immune system with synaesthesia as the main idea of a research paper published in a peer-reviewed neuroscience journal, and all without my permission! That’s another story….

I am sure that many people listening to this radio interview would be fascinated with or even skeptical of Glenda’s account of being able to see but not perceive letters on the cover of a book. Her eyesight is not the problem, the problem lies in the visual processing areas of her brain and because of this a lady who in her impressive career has been an author of books can no longer read text or interpret symbols. Seeing is as much done in the brain as it is done in the eye and optic nerves, and a person who has no apparent problem with their eyes can lose visual perception as the result of dementia or injury or stroke.

“Simple things can be very frustrating” – Glenda and Bronte Parkin on dementia. Mornings with Geoff Hutchison. 720 ABC Perth.

Jarvis, Lucy Still making a contribution: retired educators share experience of living with dementia. Community Newspapers. 2015

Hiatt, Bethany Penrhos principal’s hardest battle.  West Australian. January 3, 2011. http://au.news.yahoo.com/thewest/a/-/mp/8588194/glenda-parkin/

Postscript March 10th 2015

The West Weekend liftout of the West Australian of February 14-15 2015 has a feature story about West Australians livng with dementia on pages 10-13. he story of Glenda and Bronte Parkin is included in that article and the content makes it clear that although Glenda Parkin has a diagnosis of Benson’s syndrome which has had a negative impact on her ability to recognize symbols, writing and objects, she can still somehow navigate her way in her neighbourhood. I find this interesting as some people who have prosopagnosia, which is an impairment in face memory, also have a similar impairment in visual memory of scenes or landscapes, and thus have serious problems with navigating their way through streets and neighbourhoods. I had thought that Benson’s syndrome, a type of dementia, and prosopagnosia, a developmental disability and also sometimes acquired from brain injury, must be in many ways similar in their manifestations, as they both feature disability in face recognition, but it appears that it is not safe to make assumptions and maybe each case of these two conditions should be considered unique. I do not recall reading about Glenda Parkin’s ability to recognize faces, so maybe I should assume it is still normal, along with her ability to recognize street-scapes and scenes.

Yeoman, William Open minds. West Weekend. p. 10-13 West Australian. February 14-15 2015.


Finding confirmation of my beliefs and ideas, as you do

A closely related family member of mine recently scored a perfect mark on an adult literacy test geared to normal adults (which was true to form) , and another closely related family member in mid-childhood recently explained that they perceive motor vehicles as having faces and they categorize cars, utes and 4WDs into genders, square old 4WDs being male. I can see how that makes sense, but all the same I’ve never been that much of a car personifier. Ever since I was a child I’ve personified numbers and alphabet letters in great detail, along with perceiving them as essentially associated with very specific colours, and the shapes and motions of cars often make me think of hunting animals in some deeply instinctive way, but unlike my young relative and the many Australians who decorate their own motor vehicles with oversized curly eyelashes or giant imitation testes, I don’t see motor vehicles as male or female.

On the surface most people seem pretty-much normal and average, but if you make the most superficial investigation by testing or speaking with people about their thoughts and perceptions, you might find that there is an interesting and sometimes significant range of differences in the way our minds work. Grapheme-colour synaesthesia, personifying synaesthesia and elite and precocious levels of ability in reading, spelling and general literacy are just some of the interesting things that run in my family and are also experienced by me, and I am also a super-recognizer. A super-recognizer is a person who has an elite level of ability in recognizing faces or face memory, and typically can achieve perfect or near-perfect scores on tests of face memory. I believe that this co-occurrence of synaesthesia and elite abilities in face memory and literacy are no coincidence. I believe all of these things are based on hyper-connectivity or hyper-development in the rear parts of the brain including the fusiform gyrus, and also in the right hemisphere of the brain. I believe the genetic basis of this development might be linked to genes that code for particular variations in the functioning of the immune system, possibly involving the complement chemicals, microglia and synaptic pruning. I’m fascinated by the possibility that research work that has been done in the last decade linking immunology and neuropsychology can inform us about the origins of synaesthesia and also specific gifts and deficits in memory and cognition, and maybe also inform us about some types of dementia. In 2012 at this blog I explicitly identified research on the immune system, complement, microglia and synaptic pruning done by Dr Beth Stevens as a possible explanation for the origins of developmental synaesthesia, an idea that was so good that some synaesthesia researchers made it the basis of a speculative paper that was published in a peer-reviewed journal last year (they forgot to acknowledge me as the first to publish this idea). Work done on MHC1 (part of the immune system) and the brain by Carla Shatz is another area of scientific research that I find tremendously exciting, and I believe that the general area of research on the relationships between brain structure and the immune system is of such originality and importance that it should attract one or more Nobel Prizes.

The fusiform face area doesn’t just do faces

Tolga Çukur, Alexander G. Huth, Shinji Nishimoto and Jack L. Gallant

Functional Subdomains within Human FFA.

Journal of Neuroscience.

16 October 2013  33(42) p.16748-16766

doi: 10.1523/​JNEUROSCI.1259-13.2013


As I’ve pointed out before at this blog, I believe that my high ability in face memory is accompanied by higher than average ability in recognizing or remembering the appearance of other types of things, such as body parts, words, cars, plant species, colours and probably other things as well. What this means in practice is that I’m a pretty good speller, reader and writer, I’m great at remembering and recognize faces (even if I can’t always put a name to the face and I don’t always acknowledge that I’ve recognized a person), and I’m also very good at identifiying plants and skilled at categorizing them as weeds or wild native plants or exotic garden varieties, because I can be confident that I know exactly which species the plant is, based on recognizing the shapes and colours of plants. I also believe that high ability in visual memory for many categories of things runs in my family, and I offer this as an explanation for why extraordinary test results for literacy skills and also literacy-related careers seem to run in one lineage in my family. I contrast this genetic literacy gift with an opposite condition which I have also seen running in some families, in which people struggle to express themselves in print, write in a style that mimicks speech and not the writing of others, consistently spell in a way that looks like random phonetic guessing, and who appear to have no ability to remember the way that correctly-spelled words look. If the fusiform face area (FFA) in the fusiform gyrus in the brain is the place that “does” face visual memory and plant visual memory and word visual memory, then having a good one is a definite advantage in many ways.

Do you get this?

Do you find that your ability to spell and edit words correctly can fade if you get very, very tired? I’m generally a pretty sharp speller, so if I find that I’m looking at written words and not getting an instant “feel” for the correctness or incorrectness of the spelling of the words, and have to look at the word and think about the word, that is a sign that it is way past my bedtime. It’s as though words lose their essential “personalities” and become nothing more than strings of letters. When things get that bad there is simply no point battling on, because the brain is unreliable and likely to do more harm than good.