Tag Archives: Perfect Pitch

Time-blind, face-blind, smell-impaired, touch-disabled, dyslexic – there’s an amazing variety of disabilities of perception

It goes to show how common synaesthesia is, when a host of a radio show episode about super-recognition that I have referred to previously at this blog just happens to be a synaesthete. I know this because she was on the radio yesterday morning promoting her latest pop psychology book, which looks like it will be an interesting read. The BBC broadcaster, author and psychologist Claudia Hammond experiences the days of the week as having their own colours and insists that Monday is a pillar-box red, an assertion which to my mind does not seem odd but simply incorrect. Sure enough, the letter M is red (but certainly not pillar-box red) but surely it is plain to anyone that Mondays are white? Hammond and the cheery radio show host Natasha Mitchell also discussed other varieties of synaesthesia: time-space synaesthesia and mental number lines. Hammond’s new book is about the perception of time and it looks like it will include discussion of disability in perceiving time, and will also probably cover time-space synaesthesia.

I’ve had a look on the internet for more info about Hammond’s new book titled Time Warped, and while reading an excerpt of the book at Amazon I’ve found yet another obscure and highly specialized type of disability of perception, an inability to sense the passing of time, a condition which appears to be so obscure that it still has no name. Hammond gives a fascinating description of Eleanor, who has a deficit in sensing the passing of time that goes way beyond poor time management skills, and also has dyslexia, probably not coincidentally.

In this blog which is primarily about exploring possible links between synaesthesia and high ability in face perception and also an exploration of the opposite condition of prosopagnosia or face-blindness, I have discovered that prosopagnosia is by no means the only highly specialized disability of perception. Prosopagnosia is only one of a range of visual agnosias, which is a sub-set of the agnosias, which are a huge range of brain-based diabilities (not associated with memory loss) in recognizing specific things such as people, voices, shapes, smells, time, faces, colours, classes of objects, images of objects, pain, speech, text, body language, intonation, etc. Prosopagnosia appears to be often associated with another agnosia which is a disability in establishing visual memories of scenes, including things like streetscapes and buildings, and it seems possible that it could be linked with other better-known disabilities such as dyslexia. Each case is different, and prosopagnosia and other agnosias can be caused by genetics or damage in the brain, so one should not make sweeping generalizations. There appears to be no standard term or definition of the issue with place memory, with a variety of terms in use. I guess most people would be aware of the sensory and perception disabilities of blindness, deafness, paralysis and dyslexia, but there is also a huge range of other specific disabilities and disorders of perception and understanding, some affecting taste, smell, balance, mathematical and number sense, touch, music and tone perception. Many of these can be naturally-occuring or the result of brain injury. New Scientist magazine reported a while ago that a deficit in the sense of touch appears to be genetically linked with deafness. Scientists are only now beginning to establish knowledge about the nature of these disabilities and possible relationships between them. On top of this bewildering range of agnosias and disabilities are sensory disorders and visual disturbances that can be asociated with mental illness or are similar to mental illness. And on top of that are sensory-cognitive experiences that are simply odd or unusual but not disordered or a deficit. Synaesthesia fits into this category, of which there are more types than any sensible person would claim to know.

I find these things endlessly fascinating because it gives an insight into the significant fact that there can be many important differences between the way that apparently normal, intelligent people percieve and understand what appear to be simple sensory inputs from the world around us. The more I study this subject, the more I understand that there is nothing simple about perception and the understanding of sensory inputs. This kind of brain-work is hugely complex and it is no wonder that many areas of the brain are involved in this kind of work, and that sensory processing is very much involved in thinking in general. It is impossible to guess how many different ways that the person sitting next to you on the train might differ from you in perception and sensing, and it isn’t only about disability. For many of the agnosias and diabilities of perception and sensing there are conditions that are opposites or give rise to superior abilities that are like opposites. Does the old bloke across the way see violet mauve in his mind’s eye when he hears the train driver sound her horn, because the horn is at a pitch that his mind links with this colour, in an interaction between his perfect pitch and his coloured sound synesthesia? Does the super-recognizer in the carriage feel a tingle of familiarity from looking at two of the faces in the carriage? Is the super-taster still recovering from the second-rate coffee that he paid too much for at a fancy cafe? Is one passenger watching the screen display of info about which station the train is at like a hawk, instead of using her spare time to catch up on some reading, because she was born without any sense of time passing and can’t remotely judge the duration of her planned train journey?

Time warped: changing your perception of time. Life Matters. Radio National. July 2 2012. http://www.abc.net.au/radionational/programs/lifematters/claudia-hammond/4100994

Local brain hyperconnectivity, synaesthesia, autism, music, the temporal lobes and perfect pitch: some interesting reading

Douglas, Ed Perfect pitch. New Scientist Issue 2801 Feb 26th 2011 p. 46-49.

Online title of the article: Finely tuned minds: the secret of perfect pitch. http://www.newscientist.com/issue/2801

This is a most interesting science magazine article about perfect pitch, otherwise known as absolute pitch, the “ability to name or sing any note on demand”, written by someone who himself has perfect pitch. Ed Douglas reports on the findings of studies that have been published in six different science journals, and research scientists mentioned include Daniel Levitin, Sarah Wilson, Elizabeth Theusch, Analabha Basu, Jane Gitschier, Maria Teresa Moreno Sala, Eugenia Costa-Giomi, Patrick Bermudez, Psyche Loui, Diana Deutsch, Luca Tommasi and researchers at the RIKEN Brain Science Institute in Japan.

Douglas explicitly speculates that there could be an association between synaesthesia, autism, and perfect pitch ability, caused by an “excess of wiring in the brain” or hyperconnection. Douglas cites as evidence the study by Psyche Loui and colleagues listed above, and another New Scientist article that reported the interesting “intense world” theory of autism in 2008.

In this article the names of four famous musicians who either had perfect pitch or possibly had it, Beethoven, Ella Fitzgerald, Mozart and Jimi Hendrix are mentioned. The author Ed Douglas does not mention that two of these musicians also experienced coloured music synaesthesia (drug use could have been the cause of Hendrix’s colours). We do not know if Mozart had synaesthesia (my intuition tells me he did), but there has been much speculation over the years that Mozart might have had a range of different neurological peculiarities or disorders. Douglas mentions that Hendrix and Mozart both had an extraordinary savant-like memory for music. Hendrix, Mozart and possibly also Beethoven were left-handed.

Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity. Psyche Loui, H. Charles Li, Anja Hohmann and Gottfried Schlaug Journal of Cognitive Neuroscience. April 2011, Vol. 23, No. 4, Pages 1015-1026.
(doi: 10.1162/jocn.2010.21500) http://www.mitpressjournals.org/doi/abs/10.1162/jocn.2010.21500

This is one of the studies discussed in the above New Scientist article. Don’t ask me how a journal paper dated “April 2011” can be cited in a science magazine dated “Feb 26th 2011”. The world of science journals is a futuristic world.

Twelve musicians with absolute pitch (AP)/perfect pitch and a matched control group of twelve musicians without perfect pitch were studied. Volume and fibre numbers in some tracts in the left and right hemispheres of the brain were found to be significantly higher in the study subjects who had perfect pitch, but hyperconnectivity was not found all over the place; “Heightened connectivity among AP musicians appears to affect local structures specific to the temporal lobe.” Figure 4 in this paper strikingly shows the difference between the tracts of three groups of study subjects. This paper shows that people with perfect pitch appear to have greater connectivity in the white matter of parts of the temporal lobes that associate and perceive pitch. It looks to me as though greater connectivity in the left hemisphere might be more important regarding perfect pitch. I am not pretending to be a qualified scientist in interpreting this paper.

I believe that greater connectivity in the white matter has been found in grapheme-> colour synaesthetes, in other parts of the brain, so I would not be surprised if music-related synaesthesia might be particularly common in musicians who have perfect pitch. It is no surprise that this paper mentions synaesthesia and has two studies of a synaesthete musician with perfect pitch among its references (see below). Unfortunately synaesthesia is discussed with some negative language in this April 2011 paper; “these disorders” and “abnormal white matter connectivity”. In the discussion of this paper the case is argued that perfect pitch has hyperconnectivity in common with conditions such as synaesthesia, autism and heightened creativity, and the authors identify “increased local connectivity in temporal regions” as a feature that perfect pitch, synesthesia and autism share.

Hänggi Jürgen; Beeli Gian; Oechslin Mathias S; Jäncke Lutz The multiple synaesthete E.S.: neuroanatomical basis of interval-taste and tone-colour synaesthesia. NeuroImage. 2008;43(2):192-203. http://www.ncbi.nlm.nih.gov/pubmed/18692578

This is a journal paper that was mentioned in the 2011 journal paper above. A brain scan study was done comparing E. S., who has perfect pitch and some musical tone-related types of synaesthesia, with other professional musicians and with normal controls. Bilateral areas of hyperconnectivity in the temporal lobes of E. S. were found.

Synaesthesia: when coloured sounds taste sweet. Beeli G, Esslen M, Jäncke L. Nature. 434, 38 (3 March 2005) doi:10.1038/434038a Published online 2 March 2005. http://www.nature.com/nature/journal/v434/n7029/abs/434038a.html

http://www.ncbi.nlm.nih.gov/pubmed/15744291

Another journal article that was mentioned in the 2011 journal paper. Female synaesthete musician E.S. is compared with five non-synaesthete musicians. E.S. experiences flavoured musical tone intervals, which she uses to identify these intervals. It appears that this paper is about the same musician synaesthete with perfect pitch as the one described in the 2008 NeuroImage paper above.

I’m satisfied that there is a real association between synaesthesia and perfect pitch, based on what I have read in the above article and papers, and also based on the fact that perfect pitch seems to be unusually common among musicians who have or had synaesthesia. I believe this association between synaesthesia and perfect pitch is a direct effect of the physical localised hyperconnection within the synesthete brain that gives rise to the synaesthesia and also the increased perception ability, even though I do acknowledge that a type of synaesthesia that gives musical sounds individual colours or flavours could obviously aid in the identification of individual sounds. The question remains though – by what mechanism are the individual sounds identified then each given an identifying taste or colour? Surely a conscious or an unconscious identification of the sounds must precede the allocation of colours to the musical notes.

There is plenty of scientific evidence that various types of synaesthesia give rise to various types of superiority in perception, and it appears that perfect pitch is another example. I do not know if I have any capacity for perfect pitch as I had only the most rudimentary musical education (the same true of my synaesthete close relatives). I’m happy to conclude that simply being synaesthetes makes us especially “at risk” for possessing special powers of perception, including perfect pitch, being a super-recognizer or a superior reader, but it is also clear that specific types of special abilities and specific types of synaesthesia are associated with higher connectivity in specific parts of the brain. So far, my inquiries appear to suggest that the hyperconnectivity in the brains of my kin and I could be limited to the right hemisphere, while perfect pitch might well have as its physical basis higher connectivity in the left, so I guess we could dip out on perfect pitch. If there exists any cost-free test of the capacity for perfect pitch that can be taken by people who do not have musical training, I would love to have a crack at it.

I don’t know about perfect pitch, but I wouldn’t be surprised if there is something a bit atypical about the way our brains process sounds. The enjoyment of music is very important to a number of people in our family, which I’m sure has something to do with the temporal lobes. A lot of the music that we enjoy is sung in non-English languages, languages from all corners of the world. I’m not sure how unusual our taste in music is, but there does seem to be a hunger in our family for listening to exotic phonemes. None of us are language savants like the famous British synaesthete Daniel Tammet, but there is a consistent line of descent in our family of bilingual or multi-lingual people. I also seem to have a thing about unusual voices. I choose to have people in my life who have unusual voices and I love to listen to distinctive singing voices of a range of types. For me, singing voices are easily categorized as interesting or not interesting, and I much prefer the former. The gravel-voiced rap singers Everlast and Tone Loc have interesting voices, and so do all counter-tenors. I recently read an interesting observation about the extraordinary sound of the counter-tenor voice in a newspaper interview article about German counter-tenor Andreas Scholl. “I think these days the audience knows what a countertenor is, but it’s that inability to readily categorise the voice that makes for better communication – you listen with fresh ears, and focus more on the words.” I believe this is an important element of my enjoyment of the voices of countertenors and other singers with interesting voices. The strangeness of the sound draws attention closely, finely, and it also destroys any set of simple musical expectations. I find strange sounds compelling and interesting, and I’m not sure why I find this so very enjoyable, but I do know from experience that when people enjoy doing anything involving thought, they are most likely utilizing some particular area of cognitive strength.

Beth Gibbons from Portishead and Kate Bush are some female singers who have interesting voices. For me, many interesting voices have a colour. Today a rellie and I were having an argument at a supermarket about the colour of the music that we were listening to, as Wuthering Heights by Kate Bush, one of the strangest bits of music to ever hit the top of the charts, was playing on the PA system among the aisles of groceries. Don’t worry about us. We are just a little bit different.

Newish science magazine article about perfect pitch

I’m hoping to get a hold of copy of New Scientist magazine Issue 2801 p. 46-49 Feb 26th 2011 to read the feature article about perfect pitch, a neurological trait that seems to be unusually common among synaesthete musicians and autistic musicians. The title of the article is Finely tuned minds: the secret of perfect pitch. Unfortunately, this article is wholly behind a paywall at the website of New Scientist magazine.

http://www.newscientist.com/issue/2801

Link between face recognition and synaesthesia becoming obvious – interesting new article about tone-deafness and prosopagnosia in Scientific American magazine

This interesting recent article explains the many similarities between tone-deafness and face-blindness, and how both conditions can be caused by “structural disconnection” rather than damage to the specific parts of the brain that “do” face recognition or musical perception. The distinction between the developmental and congenital forms of these conditions are explained.

You don’t need to be a genius to see that the “structural disconnection” discussed in this article could be seen as the opposite of synaesthesia, but just in case that isn’t completely obvious, synaesthesia is mentioned at the very end of the article, in the notes about the author of this article, who is a scientist at Trinity College in Ireland who studies “the genes involved in wiring the brain and their possible involvement in psychiatric disorders and perceptual conditions, including synaesthesia.” Indeed!

A word of caution – I don’t think there is anything in this article that says that prosopagnosics are more likely to be tone-deaf, or vice versa. Although it would seem a sensible assumption that a group of traits should be found together: good face recognition should be found with intact or great or maybe even excellent ability to consciously comprehend musical notes (perfect pitch or absolute pitch), should be found with synaesthesia, but this is not always the case. Apparently there are synaesthetes who are also very poor at face recognition, and the synaesthete author Vladimir Nabokov has been reported by Oliver Sacks to have possibly had “a profound amusia” (Sacks 2007, 2008 p. 109-110), based on a passage that Nabokov wrote in his memoir Speak, Memory. I think amusia is a fancy word for tone-deafness. In the book Musicophilia Oliver Sacks describes a number of different types of amusia, and interestingly, this prosopangnosic author also describes in his book some episodes of  amusia that he experienced which were a part of the aura of his  migraine headaches. There are so many connections here that it’s almost like looking at a plate of spaghetti!

Are people who have perfect pitch better than average at face recognition? Are super-recognizers synaesthetes? Is perfect pitch unusually common in synaesthetes? Are the opposite deficits associated with each other? Get to work, researchers!

Mitchell, Kevin The Neuroscience of Tone Deafness: The strange connection between people who can’t sing a tune and people who are “face blind”. Scientific American. January 18th 2011. http://www.scientificamerican.com/article.cfm?id=the-neuroscience-of-tone

Mitchell, K. J. Curiouser and curiouser: genetic disorders of cortical specialization.Current Opinion in Genetics & Development. 2011 Feb 4. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/21296568

Sacks, Oliver Musicophilia: tales of music and the brain. Revised and expanded edition. Picador, 2007, 2008.

Tranel, D. Damasio, A. R. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science. 1985 Jun 21;228(4706):1453-4. http://www.sciencemag.org/content/228/4706/1453.abstract  http://www.ncbi.nlm.nih.gov/pubmed/4012303

 

Postscript 2013 – I’ve had comments from at least one person who is apparently a definite and high-profile super-recognizer to the effect that she is not a synaesthete, so that’s a strike against the idea that supers are synaesthetes. Regardless, I reserve the right to point out that some researchers have found that some study subjects who claim to not have synaesthesia have returned test results that suggest that they are, so it appears to be possible to be a synaesthete and not know it.