Tag Archives: Functional Magnetic Resonance Imaging

Surprising explanation for why face recognition matures unusually late in human development!

I didn’t expect to be reading this but I can recognize that this discovery seems to explain why face recognition is human cognitive ability that hits its peak surprisingly late in human development, and I’m now wondering how this fits into my theories about the relationship between my super-recognition and my synaesthesia, and that includes wondering how this discovery fits with my immune hypothesis of synaesthesia (which is all about pruning rather than proliferation), and of course I’m wondering how this fits in with what is known about super-recognizers. I guess I should just calm down and read the full text.

Coghlan, Andy Brain’s face recognition area grows much bigger as we get older. New Scientist. January 5th 2017.
https://www.newscientist.com/article/2117259-brains-face-recognition-area-grows-much-bigger-as-we-get-older/

Jesse Gomez, Michael A. Barnett, Vaidehi Natu, Aviv Mezer, Nicola Palomero-Gallagher, Kevin S. Weiner, Katrin Amunts, Karl Zilles, Kalanit Grill-Spector Microstructural proliferation in human cortex is coupled with the development of face processing. Science. January 6th 2017.

http://science.sciencemag.org/content/355/6320/68

 

There is a tiny little face inside your brain (or at least there should be one)

Linda Henriksson, Marieke Mur, Nikolaus Kriegeskorte Faciotopy—A face-feature map with face-like topology in the human occipital face area. Cortex. Volume 72, Pages e1-e2, 1-178 (November 2015) p.156-167.

http://www.sciencedirect.com/science/article/pii/S0010945215002464

 

Thomson, Helen Your face is mapped on the surface of other people’s brains. New Scientist. January 19th 2016.

https://www.newscientist.com/article/2073919-your-face-is-mapped-on-the-surface-of-other-peoples-brains/

 

Your face is mapped on the surface of other people’s brains. New Scientist. Issue 3057 23 January 2016.

https://www.newscientist.com/article/2073682-your-face-is-mapped-on-the-surface-of-other-peoples-brains/

 

Cortex
Volume 72, Pages e1-e2, 1-178 (November 2015)
The whole is greater than the sum of the parts Distributed circuits in visual cognition
Edited by Paolo Bartolomeo, Patrik Vuilleumier and Marlene Behrmann

http://www.sciencedirect.com/science/journal/00109452/72/supp/C

 

All those years of neuroimaging research on the brains of synaesthetes has found nothing of substance?

Hupé J and Dojat M (2015) A critical review of the neuroimaging literature on synesthesia. Frontiers in Human Neuroscience. 9:103.
doi:10.3389/fnhum.2015.00103

http://journal.frontiersin.org/article/10.3389/fnhum.2015.00103/abstract

“Our critical review therefore casts some doubts on whether any neural correlate of the synesthetic experience has been established yet”

That is a bit of a shock to read. This isn’t the first time that I’ve gotten a big shock after reading a paper in the journal Frontiers in Human Neuroscience. There was that little matter of some of my most amazing neuroscientific ideas published at this blog being ripped-off and used as the guts of an “opinion article” in that journal in 2013. I haven’t forgotten that episode. Who would have thought so much excitement is there to be found inside a science journal? I should make it clear that the researchers who did that thing in 2013 are NOT the authors of the above paper, but at the same time, I’ve got to wonder where Hupé and Dojat got this idea from

“…synesthesia could be reconsidered as a special kind of childhood memory, …”

Sure, they could have thought of that under their own steam, but I still want to point out that the central, seminal idea of this blog, right from the very first post in 2010, has been the idea that synaesthesia is linked in some meaningful way with face memory, in my case with super-recognizer ability in face memory, and there are many articles in this blog that show and hint that the heart of synaesthesia is memories created in childhood and many different types of synaesthesia operate in ways that are so much like memory that the differences are only quantitative. There was even one article published in 2013 at this blog in which I stated that

“…the Proust phenomenon is considered to be a type of memory and many of my observations at this blog have demonstrated that synaesthesia can involve memory, is an element of the “method of loci” memory technique and I would argue operates like memory. Yes, Yes, Yes, the Proust Phenomenon is a close relative of synaesthesia.”

Some ideas that I’d like to (explicitly) lay claim to (right now) in 2014

Pareidolia at Sculptures by the Sea – our child clearly has an excellent left fusiform gyrus

Shipwreck by Steve Croquett at Sculpture by the Sea Cottesloe 2012

Shipwreck by Steve Croquett at Sculpture by the Sea Cottesloe 2012

I took our youngest with me when I visited this year’s Sculptures by the Sea at what is known to some locals as Cottesloe Main Beach. We had a wonderful time, and her favourite scuplture was the lounge room made of sandbags on the sea shore (Comfort Zone by Alessandra Rossi), but I think our child really got more fun out of playing with other kids with the sculpture Xing by Graeme Pattison. I would love to see some local government pruchase this sculpture for installation at a playground. As soon as she saw the Shipwreck sculpture by Steve Croquett our child identified it as two faces, not a shipwreck. This instant interpretation no surprise to me. Even as a baby our child has had an uncanny ability to detect visual patterns which are not apparent to others. I once noticed our child as a baby laughing at the calendar that was hanging in our kitchen. It was a freebie produced by our local council and it had a rather cheap attempt at art in it, in which a photo of faces was superimposed with some other image in a way that made the cheery faces rather hard to pick, but our little girl had noticed them. Our child was also quite gifted at spotting spiders all around the house which no one else noticed, even very small ones, very thin Daddy-long-legs spiders, and spiders way up on the ceiling. Our young one also loves to point out animal shapes in clouds, or in shapes found in natural objects, and I can always see the same thing when my attention is drawn to the shapes by our child. I suspect that our child’s interest and perhaps talent in identifying visual patterns might be genetically related to my unusual ability in face recognition. She has at times expressed observations that appear to be evidence of synaesthesia, which I experience and which runs in our family, but it is hard to know what to make of this as our child is young and some synesthesia researchers believe that all young children experience synaesthesia.

It appears that the term that is used for the ability to spot face-like visual patterns is pareidolia, but the definition of this term found in the Wikipedia isn’t really the same as what our child does. The Wikipedia defines pareidolia as a psychological phenomenon in which random or vague stimulus is perceived as significant. Our child doesn’t percieve the shapes as significant – our child percieves the shapes in non-face objects as resembling faces, but clearly understands that they are just resemblances, and there is no indication that our child thinks there is anything particularly significant about what is seen. The term pareidolia is also too general to define what our child does – our child notices patterns in visual stimuli to an unusual degree, but does not notice patterns in auditory stimuli to any unusual degree, as far as I can tell, but the term pareidolia appears to be not sepcific to any sensory mode. I would like to see a more specific term for identifying patterns in random or vague visual stimuli and an even more specific term for identifying faces in random or vague visual stimuli. I’m surprised that scientists haven’t already created terms for these things.

In January of this year an interesting  fMRI study exploring the relationship between pareidolia and face perception was published in the science journal Proceedings of the Royal Society B. One of the authors of the study is from Dartmouth College and another is from MIT, two US universities where world-leading studies on face recognition are done. Two interesting articles about the study were also published in January, one at Wired magazine and the other at MIT News. To summarize the findings, the pattern of activations found in the left and the right fusiform gryri were interpreted as evidence that the left fusiform gyrus does the job of noticing face-like patterns in images, while the right fusiform gyrus also performed face processing, but did not duplicate the task done by the left, but instead performed the job of deciding whether or not a face-like image is in fact a real face. It is thought that these brain areas work together to interpret images. So it appears that the department of pareidolia in the brain is the left fusiform gyrus, while judgements about what is a real face are performed in a separate but similar and linked part of the brain. I think this arrangement will make sense to anyone who understands the processes that give rise to creativity and reflective thought. Different modes of thinking by different parts of the brain, in a series of stages, make up the process of intellectual creation. Turn-taking and specialization are features of this type of process, and it is no surprise to me that a most important part of the brain, the fusiform gyrus, also works in this way.

Sculptures by the Sea  http://www.sculpturebythesea.com/Home.aspx

Wikipedia. Pareidolia.  http://en.wikipedia.org/wiki/Pareidolia

Brown, Mark How does your brain know when a face is really a face? Wired.co.uk January 10th 2012.  http://www.wired.co.uk/news/archive/2012-01/10/face-perception

Trafton, Anne How does our brain know what is a face and what’s not? MIT News. January 9th 2012.  http://web.mit.edu/newsoffice/2011/face-perception-0109.html

Ming Meng, Tharian Cherian, Gaurav Singal, Pawan Sinha Lateralization of face processing in the human brain. Proceedings of the Royal Society B. Published online before print January 4, 2012. doi: 10.1098/rspb.2011.1784.   http://rspb.royalsocietypublishing.org/content/early/2012/01/03/rspb.2011.1784.abstract